If it's not what You are looking for type in the equation solver your own equation and let us solve it.
31x^2+125x-150=0
a = 31; b = 125; c = -150;
Δ = b2-4ac
Δ = 1252-4·31·(-150)
Δ = 34225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{34225}=185$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(125)-185}{2*31}=\frac{-310}{62} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(125)+185}{2*31}=\frac{60}{62} =30/31 $
| 10x^2+78x+154=0 | | 6x+3=126 | | 1/8k-40=-26 | | 9u+72=3u+48 | | 6x+120=75-2x | | -6v+1=0 | | 4y+20=8y-20 | | (3x+30)+(10x-6)=180 | | 21q-11=220.5 | | 16-4z=4(z-4) | | 8u+7u-35=25 | | 2x-15=2x-15+90=180 | | -12=4v+7v+21 | | 13x+22=16 | | (9x+5)(3x^2-14x-5)=0 | | 14.9+3y=6y+8 | | 4-2(x+5)=-14 | | 14x^2+83x+65=0 | | 3w+18=7w+30 | | 7v+5=4v+26 | | F(x)=4x1x | | (X+3)×(x-3)=7 | | 4u+24=8u-8 | | 42+42+6x=180 | | 42+6x+6x=180 | | 6x+42+80=180 | | 7x+30=2x-24 | | 52-6x=7x-10 | | 61+53+3x=180 | | 5n-3n=16 | | 3r+2(12r+7=5r-8 | | -2(z+5)+20=6 |